Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.394
Filtrar
1.
Inflammopharmacology ; 32(2): 1371-1386, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448794

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that impairs mental ability and interrupts cognitive function. Heavy metal exposure like aluminum chloride is associated with neurotoxicity linked to neuro-inflammation, oxidative stress, accumulation of amyloid plaques, phosphorylation of tau proteins associated with AD like symptoms. The objective of the present investigation was to assess the effect 3-acetyl coumarin (3AC) in a rat model of AD. Preliminary screening was performed with SWISS ADME to check for the bioavailability of 3-AC and likeness score which proved favorable. 3-AC docked against Caspase 3, NF-κß and tau protein kinase I exhibited good binding energies. Male rats were divided into six groups (n = 5). AlCl3 (100 mg/kg BW) was administered for 28 days before starting treatment to induce AD. Normal control rats received vehicle. Treatment groups received 10, 20 and 30 mg/kg 3-AC for 28 days. Rivastigmine (2 mg/kg) was the standard. Behavioral tests (EPM, MWM) were performed at 7-day intervals throughout study period. Rats showed improved spatial memory and learning in treatment groups during behavioral tests. Rats were euthanized on day 28. Inflammatory markers (IL-1ß, IL-16 and TNFα) exhibited significant improvement (p < 0.001) in treated rats. Oxidative stress enzymes (SOD, CAT, GSH, MDA) were restored. Caspase3 and NF-κß quantified through qRT-PCR also decreased significantly (p < 0.001) when compared to disease control group. Levels of acetyl cholinesterase, dopamine and noradrenaline were also restored in treated rats significantly (p < 0.001). 3-AC treatment restored neuroprotection probably because of anti-inflammatory, anti-oxidant and anti-cholinesterase potential; hence, this can be considered a promising therapeutic potential alternative.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Masculino , Animais , Cloreto de Alumínio/efeitos adversos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Compostos de Alumínio/uso terapêutico , Compostos de Alumínio/toxicidade , Cloretos/toxicidade , Cloretos/uso terapêutico , Ratos Wistar , Estresse Oxidativo , Antioxidantes/farmacologia , Inflamação/tratamento farmacológico , Inflamação/complicações , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Modelos Animais de Doenças
2.
Eur Rev Med Pharmacol Sci ; 28(5): 1680-1694, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38497852

RESUMO

OBJECTIVE: The goal of this study was to investigate the potential protective effect of L-carnitine (20 mg/kg bw, 1/20 LD 50) against aluminum chloride (AlCl3) on the quality of the male rats' testicles and sperm, as well as to determine whether or not the effects of AlCl3 could be counteracted by using L-carnitine as an antioxidant. MATERIALS AND METHODS: Six groups of 36 adult male albino rats (n=6) were randomly formed. In Group I (Gp I), saline injection was given orally as a control. Group II (Gp II) was injected orally with 75 mg/kg body weight of L-carnitine. Group III (Gp III) was given a high dose of L-carnitine (150 mg/kg body weight) orally, while Group IV (G IV) was given a low dose of AlCl3 (20 mg/kg body weight). Group V (Gp V) was given an oral injection of AlCl3 (20 mg/kg) and L-carnitine (75 mg/kg body weight). Group VI (Gp VI) was given AlCl3 at a dose of 20 mg/kg and L-carnitine at a dose of 150 mg/kg body weight for 60 days. The reproductive capacity of each group was assessed. Thus, in addition to histopathological analysis and the comet assay to evaluate sperm DNA deterioration, final body weight, testicular weight change, and sperm analysis were carried out. RESULTS: The findings revealed that AlCl3 caused a significant decrease in final body weight, relative weight of sex organs, sperm concentration, motility and viability, serum testosterone concentration, and a significant increase in sperm abnormalities. Furthermore, AlCl3 caused visible changes in the histological structure of the testis. CONCLUSIONS: L-carnitine treatment alleviated the harmful effects of AlCl3, as evidenced histopathologically by a noticeable improvement in testis tissues. When it comes to treating AlCl3-induced reproductive toxicity in male rat testes, L-carnitine shows promise.


Assuntos
Antioxidantes , Testículo , Masculino , Ratos , Animais , Cloreto de Alumínio , Antioxidantes/farmacologia , Sêmen , Carnitina/farmacologia , Peso Corporal
3.
Sci Total Environ ; 915: 170128, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38242464

RESUMO

Studies have revealed neurotoxicity, hepatotoxicity, and developmental and reproductive toxicity in mice exposed to aluminum. However, relatively few studies have been conducted to clarify the mechanism underlying the impact of embryonic exposure to aluminum on the development of the male reproductive system in offspring. Pregnant mice were administered aluminum chloride (AlCl3) by gavage from day 12.5 of gestation until birth. Our findings demonstrated that embryonic exposure to AlCl3 disrupted testicular development and spermatogenesis by impairing testicular architecture, reducing sperm count, and upregulating the expression of tight junction (TJ) protein between Sertoli cells (SCs). Further in vitro studies revealed that treatment with AlCl3 stabilized TJ proteins Occludin and ZO-1 expression by inhibiting ERK signaling pathway activation, thereby upregulating Slc25a5 expression which induced ATP production leading to disruption of cytoskeletal protein homeostasis. Therefore, the study provided a new mechanistic insight into how AlCl3 exposure interfered with testicular development and spermatogenesis while suggesting that Slc25a5 might be a target affected by AlCl3 influencing cell metabolism.


Assuntos
Alumínio , Junções Íntimas , Gravidez , Feminino , Masculino , Camundongos , Animais , Cloreto de Alumínio , Alumínio/metabolismo , Junções Íntimas/metabolismo , Sêmen , Testículo/metabolismo , Espermatogênese , Proteínas de Junções Íntimas/metabolismo
4.
Eur J Pharmacol ; 965: 176332, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38228217

RESUMO

Alzheimer's disease (AD) is the most common form of dementia and is a progressive neurodegenerative disorder of the brain. Most AD experimental animal models are pharmacological or transgenic in origin. The existing pharmacological approaches for developing AD are poorly developed and most of them fail to replicate the complete characteristics of disease pathology. Developing a cost-effective and reliable experimental animal model will meet this research gap. Zebrafish (ZF) are progressively emerging as a powerful drug discovery disease model to evaluate central nervous system (CNS) disorders due to their homologous similarities to humans as well as cost-effectiveness. The present research is conceptualized to develop and evaluate a reliable ZF AD model using aluminum chloride (AlCl3). Chronic exposure of 0.04 mM of AlCl3 for 28 days increased the expression of amyloid-ß, phosphorylated tau protein and senile plaque development in the ZF brain. The observed changes were associated with learning and memory impairment. Furthermore, decreased brain-derived neurotrophic factor (BDNF) level and elevated oxidative stress indices, pro-inflammatory cytokines levels and acetylcholine esterase (AChE) activity was observed upon exposure to AlCl3 in the ZF brain. Chronic exposure to 0.04 mM of AlCl3 would be a cost-effective ZF AD model for pharmacological screening and may also be used to unravel the molecular mechanism underlying the neuropathology of the disease.


Assuntos
Doença de Alzheimer , Humanos , Animais , Cloreto de Alumínio , Doença de Alzheimer/metabolismo , Peixe-Zebra , Cloretos/toxicidade , Doenças Neuroinflamatórias , Estresse Oxidativo , Colinérgicos/farmacologia , Modelos Animais de Doenças
5.
J Ethnopharmacol ; 323: 117708, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38181932

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fraxinus excelsior L. (FE), commonly known as the ash, belongs to the Oleaceae family and has shown several pharmacological and biological properties, such as antioxidant, immunomodulatory, neuroprotective, and anti-inflammatory effects. It has also attracted the most attention toward neuroinflammation. Moreover, FE bark and leaves have been used to treat neurological disorders, aging, neuropathic pain, urinary complaints, and articular pain in traditional and ethnomedicine. Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder resulting from the involvement of amyloid-beta, metal-induced oxidative stress, and neuroinflammation. AIM OF THE STUDY: The objective of the current study was to assess the neuroprotective effects of hydromethanolic extract from FE bark in an AlCl3-induced rat model of AD. MATERIALS AND METHODS: The maceration process was utilized to prepare the hydromethanolic extract of FE bark, and characterized by LC-MS/MS. To assess the anti-AD effects of the FE extract, rats were categorized into five different groups, AlCl3; normal control; FE-treated groups at 50, 100, and 200 mg/kg. Passive avoidance learning test, Y-maze, open field, and elevated plus maze behavioral tests were evaluated on days 7 and 14 to analyze the cognitive impairments. Zymography analysis, biochemical tests, and histopathological changes were also followed in different groups. RESULTS: LC-MS/MS analysis indicated the presence of coumarins, including isofraxidin7-O-diglucoside in the methanolic extract of FE as a new isofraxidin derivative in this genus. FE significantly improved memory and cognitive function, maintained weight, prevented neuronal damages, and preserved the hippocampus's histological features, as demonstrated by behavioral tests and histopathological analysis. FE increased anti-inflammatory MMP-2 activity, whereas it decreased that of inflammatory MMP-9. Moreover, FE increased plasma antioxidant capacity by enhancing CAT and GSH while decreasing nitrite levels in the serum of treated groups. In comparison between the treated groups, the rats that received high doses of the FE extract (200 mg/kg) showed the highest therapeutic effect. CONCLUSION: FE rich in coumarins could be an effective anti-AD adjunct agent, passing through antioxidant and anti-inflammatory pathways. These results encourage further studies for the development of this extract as a promising agent in preventing, managing, or treating AD and related diseases.


Assuntos
Doença de Alzheimer , Fraxinus , Fármacos Neuroprotetores , Ratos , Animais , Cloreto de Alumínio/farmacologia , Cloreto de Alumínio/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Fraxinus/metabolismo , Doenças Neuroinflamatórias , Casca de Planta/metabolismo , Cromatografia Líquida , Ratos Wistar , Modelos Animais de Doenças , Espectrometria de Massas em Tandem , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Cumarínicos/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
6.
Brain Res ; 1823: 148704, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38052316

RESUMO

Alzheimer's disease (AD) is a chronic, progressive neurodegenerative condition marked by cognitive impairment. Although coconut oil has been shown to be potentially beneficial in reducing AD-related cognitive deficits, information on its mechanism of action is limited. Thus, we investigated the effects of coconut oil on spatial cognitive ability and non-cognitive functions in a rat model of AD induced by G-galactose (D-GAL) and aluminum chloride (AlCl3), and examined the changes in synaptic transmission, cholinergic activity, neurotrophic factors and oxidative stress in this process. The AD model was established by administering D-GAL and AlCl3 for 90 days, while also supplementing with coconut oil during this time. Cognitive and non-cognitive abilities of the rats were evaluated at the end of the 90-day supplementation period. In addition, biochemical markers related to the pathogenesis of the AD were measures in the hippocampus tissue. Exposure to D-GAL/AlCl3 resulted in a reduction in locomotor activity, an elevation in anxiety-like behavior, and an impairment of spatial learning and memory (P < 0.05). The aforementioned behavioral disturbances were observed to coincide with increased oxidative stress and cholinergic impairment, as well as reduced synaptic transmission and levels of neurotrophins in the hippocampus (P < 0.05). Interestingly, treatment with coconut oil attenuated all the neuropathological changes mentioned above (P < 0.05). These findings suggest that coconut oil shows protective effects against cognitive and non-cognitive impairment, AD pathology markers, oxidative stress, synaptic transmission, and cholinergic function in a D-GAL/AlCl3-induced AD rat model.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Disfunção Cognitiva , Fármacos Neuroprotetores , Ratos , Animais , Óleo de Coco/farmacologia , Cloreto de Alumínio/efeitos adversos , Transtornos Cognitivos/tratamento farmacológico , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/patologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Hipocampo , Estresse Oxidativo , Colinérgicos/farmacologia , Modelos Animais de Doenças , Galactose/toxicidade , Fármacos Neuroprotetores/uso terapêutico
7.
Chemosphere ; 349: 140880, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061564

RESUMO

In order to verify that coagulation as pre-treatment can reduce the temperature of the hot air used for direct contact evaporating the leachate concentrate (LC) and low-grade waste heat such as exhaust steam in the waste incineration plant can be used to evaporate the LC. The supernatants after coagulation using polymerized ferrous sulfate (PFS), polymeric-aluminum (PAC), polymeric silicate aluminum ferric (PSAF) and poly-aluminum ferric chloride (PAFC) as coagulants were further treated in a lab-scale direct contact evaporation system. The results showed that the best performance with removal efficiencies of COD and NH3-N of 58.70% and 29.09% was achieved after coagulation when PAFC dosage = 15 g/L, PAM dosage = 30 mg/L and initial pH of supernatant = 6. After coagulation, a large amount of the fulvic-like acid and aromatic heterocyclic compounds were removed and the degree of complexity and aromaticity of organics decreased. After direct contact evaporation, using PAFC as coagulant still was the best selection due to its lowest concentrations of COD and NH3-N (22 mg/L and 1.02 mg/L) in the condensate produced by this two-stage treatment when initial pH of supernatant was 6 during evaporation and the condensate produced by this two-stage treatment met the water quality standard for using as supplying water for circulating cooling water system when temperature of hot air used for heating LC was at low temperature (250 °C). The fulvic-like acid and aromatic heterocyclic compounds in the condensate continuously reduced. Phenol, adamantane, 1-isocyanato, phthalic anhydrid, tri(2-chloroethyl) phosphat, Heptadecane, 2-methyl, ginsenol and Octadecane, 2-methyl- in the condensate obviously decreased. The effect of four coagulants as pretreatment on reducing the temperature of hot air used for evaporating LC was ranked as PAFC > PFS > PAC > PSAF. PSAF was not recommended due to the large amount of NH3-N produced when using PSAF to treat the LC.


Assuntos
Compostos Heterocíclicos , Poluentes Químicos da Água , Alumínio , Poluentes Químicos da Água/análise , Incineração , Cloreto de Alumínio , Compostos Orgânicos , Eliminação de Resíduos Líquidos/métodos
8.
J Trace Elem Med Biol ; 82: 127352, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38070385

RESUMO

BACKGROUND: One of the hypotheses that leads to an increased incidence of Alzheimer's disease (AD) is the accumulation of aluminum in the brain's frontal cortex. The present study aimed to evaluate the therapeutic role of a novel bithiophene derivative at two doses against AlCl3-induced AD in a rat model. METHODOLOGY: Adult male rats were divided into six groups, 18 rats each. Group 1: naïve animals, group 2: animals received a daily oral administration of bithiophene dissolved in DMSO (1 mg/kg) for 30 days every other day, groups 3-6: animals received a daily oral administration of AlCl3 (100 mg/kg/day) for 45 consecutive days. Groups 4 and 5 received an oral administration of low or high dose of the bithiophene (0.5 or 1 mg/kg, respectively). Group 6; Animals were treated with a daily oral dose of memantine (20 mg/kg) for 30 consecutive days. MAIN FINDINGS: Al disturbed the antioxidant milieu, elevated the lipid peroxidation, and depleted the antioxidants. It also disturbed the synaptic neurotransmission by elevating the activities of acetylcholine esterase and monoamine oxidase resulting in the depletion of dopamine and serotonin and accumulation of glutamate and norepinephrine. Al also deteriorated the expression of genes involved in apoptosis and the production of amyloid-ß plaques as well as phosphorylation of tau. The new bithiophene at the low dose reversed most of the previous deleterious effects of aluminum in the cerebral cortex and was in many instances superior to the reference drug; memantine. CONCLUSION: Taking together, the bithiophene modulated the AD etiology through antioxidant activity, prevention of neuronal and synaptic loss, and probably mitigating the formation of amyloid-ß plaques and phosphorylation of tau.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Alumínio/efeitos adversos , Cloreto de Alumínio/farmacologia , Memantina/efeitos adversos , Ratos Wistar , Peptídeos beta-Amiloides/metabolismo , Transmissão Sináptica , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo
9.
Bioorg Chem ; 143: 107046, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141332

RESUMO

This study was aimed at investigating the neuroprotective potential of a co-extract obtained by supercritical fluid extraction (SFE) of turmeric powder and dried coconut shreds against aluminium chloride (AlCl3)-induced Alzheimer's disease (AD) in male Wistar rats. Fifty animals were allocated to five groups, which received saline (vehicle control, group 1), a combination of saline and aluminium chloride (AlCl3) (disease control, group 2), coconut oil (COO) (SFE extracted, treatment group 3), turmeric oleoresin (Cur) (SFE extracted, treatment group 4) and SFE co-extract of turmeric powder and coconut shreds (CurCOO) (treatment group 5). Animals were subjected to behavioural evaluation. In addition, the hippocampal section of the brain from all groups was subjected to biochemical, molecular and histopathological evaluations. The results showed CurCOO administered intranasally improved cognitive abilities, reversed histological alterations in the brain, reduced hippocampus inflammation studied through proinflammatory cytokine markers like TNF-α and IL-6 as compared to the disease control group. The impact of CurCOO on preventive neurodegeneration was also observed through a reduction in protein transcription factor NF-kB in the treated group 5 as compared to a disease control group. The effect of intranasal delivery of CurCOO on the neurons responsible for memory consolidation was evident from low acetylcholinesterase (AChE) enzyme activity in the treated groups with respect to AlCl3 induced group. Summarily, the results demonstrated intranasal delivery of CurCOO to show better efficacy than Cur and COO in preventing neurodegeneration associated with AlCl3 induced Alzheimer's disease.


Assuntos
Doença de Alzheimer , Ratos , Masculino , Animais , Cloreto de Alumínio , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Compostos de Alumínio/efeitos adversos , Compostos de Alumínio/metabolismo , Cloretos/efeitos adversos , Cloretos/metabolismo , Curcuma , Pós/efeitos adversos , Pós/metabolismo , Ratos Wistar , Neuroproteção , Acetilcolinesterase/metabolismo , Cocos/metabolismo , Encéfalo/metabolismo
10.
Dokl Biol Sci ; 512(1): 354-359, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38087026

RESUMO

The common gromwell Lithospermum officinale L. is a valuable medicinal plant that has been used in traditional medicine since ancient times. A method to quantify flavonoids in L. officinale leaves by differential spectrophotometry was developed taking advantage of the flavonoid reaction with aluminum chloride. The optimum duration of the reaction was determined, as well as the optimum volume-to-volume ratio between an aqueous ethanolic extract of L. officinale leaves and 2% aluminum chloride (aqueous ethanolic solution). Rutin was used as a standard. The method was validated in terms of specificity, linearity, precision, and accuracy and proved suitable for analytical purposes. The flavonoid content expressed in terms of rutin was found to exceed 2% of the absolutely dry weight in L. officinale leaves over different years of cultivation.


Assuntos
Boraginaceae , Lithospermum , Flavonoides , Cloreto de Alumínio , Rutina , Folhas de Planta , Extratos Vegetais
11.
PLoS One ; 18(11): e0286349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37910530

RESUMO

OBJECTIVE: Berberis lycium is an indigenous plant of Pakistan that is known for its medicinal properties. In the current study, we investigated the anti-Alzheimer's effect of berberine isolated from Berberis lycium. METHODS: Root extract of B. lycium was subjected to acetylcholinesterase inhibition assay and column chromatography for bioassays guided isolation of a compound. The neuroprotective and memory improving effects of isolated compound were evaluated by aluminium chloride induced Alzheimer's disease rat model, elevated plus maze (EPM) and Morris water maze (MWM) tests., Levels of dopamine and serotonin in rats brains were determined using HPLC. Moreover, western blot and docking were performed to determine interaction between berberine and ß-secretase. RESULTS: During fractionation, ethyl acetate and methanol (3:7) fraction was collected from solvent mixture of ethyl acetate and methanol. This fraction showed the highest anti-acetylcholinesterase activity and was alkaloid positive. The results of TLC and HPLC analysis indicated the presence of the isolated compound as berberine. Additionally, the confirmation of isolated compound as berberine was carried out using FTIR and NMR analysis. In vivo EPM and MWM tests showed improved memory patterns after berberine treatment in Alzheimer's disease model. The levels of dopamine, serotonin and activity of antioxidant enzymes were significantly (p<0.05) enhanced in brain tissue homogenates of berberine treated group. This was supported by decreased expression of ß-secretase in berberine treated rat brain homogenates and good binding affinity of berberine with ß-secretase in docking studies. Binding energies for interaction of ß-secretase with berberine and drug Rivastigmine is -7.0 kcal/mol and -5.8 kcal/mol respectively representing the strong interactions. The results of docked complex of secretase with berberine and Rivastigmine was carried out using Gromacs which showed significant stability of complex in terms of RMSD and radius of gyration. Overall, the study presents berberine as a potential drug against Alzheimer's disease by providing evidence of its effects in improving memory, neurotransmitter levels and reducing ß-secretase expression in the Alzheimer's disease model.


Assuntos
Doença de Alzheimer , Berberina , Berberis , Lycium , Fármacos Neuroprotetores , Ratos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Berberina/farmacologia , Berberina/uso terapêutico , Berberis/química , Berberis/metabolismo , Cloreto de Alumínio , Lycium/metabolismo , Simulação de Acoplamento Molecular , Rivastigmina/farmacologia , Rivastigmina/uso terapêutico , Acetilcolinesterase/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Dopamina , Metanol , Serotonina/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
12.
Braz J Biol ; 83: e272466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37851769

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by hippocampal, and cortical neuron deterioration, oxidative stress, and severe cognitive dysfunction. Aluminum is a neurotoxin inducer for cognitive impairments associated with AD. The treatment approaches for AD are unsatisfactory. Boswellia papyrifera and Syzygium aromaticum are known for their pharmacological assets, including antioxidant activity. Therefore, the current study explored the possible mitigating effects of a combination of Boswellia papyrifera and Syzygium aromaticum against aluminum chloride (AlCl3) induced AD. The AD model was established using AlCl3 (100 mg/kg), and the rats were orally administrated with Boswellia papyrifera or Syzygium aromaticum or a combination of them daily for 8 weeks. The Y-maze test was used to test cognition in the rats, while acetylcholinesterase (AChE) and oxidative stress markers were estimated in homogenates of the cerebral cortex and hippocampus. Also, the histopathological examination of the cortex and hippocampus were investigated. The results revealed that administration of either B. papyrifera or S. aromaticum extracts significantly improved the cognitive functions of AD rats, enhanced AChE levels, increased oxidative enzymes levels, including SOD and GSH, and reduced MDA levels in homogenates of the cerebral cortex and hippocampus and confirmed by improvement in histological examination. However, using a combination therapy gave better results compared to a single treatment. In conclusion, the present study provided primary evidence for using a combination of B. papyrifera and S. aromaticum to treat cognitive dysfunction associated with AlCl3 Induced AD by improving the AChE levels and modulating oxidative stress in the brain.


Assuntos
Doença de Alzheimer , Boswellia , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Syzygium , Masculino , Ratos , Animais , Cloreto de Alumínio/toxicidade , Cloreto de Alumínio/uso terapêutico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Syzygium/metabolismo , Boswellia/metabolismo , Compostos de Alumínio/toxicidade , Compostos de Alumínio/uso terapêutico , Cloretos/toxicidade , Cloretos/uso terapêutico , Acetilcolinesterase/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Ratos Wistar , Estresse Oxidativo
13.
Shanghai Kou Qiang Yi Xue ; 32(3): 251-254, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37803978

RESUMO

PURPOSE: To evaluate the effect of different kinds of gingival retraction agents after directly contacted with polyvinyl siloxane impression materials on polymerization inhibition and the inhibition degree. METHODS: Five kinds of gingival retraction agents (0.1% epinephrine hydrochloride, 0.05% oxymetazoline, 15.5% ferric sulfate, 25% aluminum chloride and 5% aluminum chloride) were chosen, normal saline was as control group, and two kinds of polyvinyl siloxane impression materials (ExpressTM, ImprintTM Ⅱ) were combined into 12 groups. There were 12 specimens in each group and 144 specimens in total. Silicone rubber impression materials were mixed by the same operator using a dispensing gun into the acrylic mold, so that they could directly contact the gingival retraction agents on the densely woven cotton fabrics. The samples were removed when the polymerization time arrived according to the manufactures' recommendations and then placed under a stereomicroscope with a magnification of 10 times to observe whether polymerization inhibition occurred, the degree of inhibition was compared afterwards. SPSS 22.0 software package was used for statistical analysis. RESULTS: The polymerization inhibition of two kinds of silicone rubber impression materials occurred in 15.5% ferric sulfate group and 25% aluminum chloride group, and the inhibition occurrence rate was 100%, the difference was statistically significant (P<0.05) compared with normal saline group. Inhibition was not found in 0.1% epinephrine hydrochloride group, 0.05% oxymetazoline group and 5% aluminum chloride. The effect of 15.5% ferric sulfate and 25% aluminum chloride on polymerization inhibition degree of ImprintTM Ⅱ was greater than ExpressTM, and the difference was statistically significant(P<0.05). CONCLUSIONS: When silicone rubber impression material is used during impression procedure, attention should be paid to the effect of the gingival retraction agent containing 15.5% ferric sulfate and 25% aluminum chloride on its polymerization. The gingival retraction agent should be washed before impression to avoid the residue directly contacting the silicone rubber to prevent polymerization.


Assuntos
Oximetazolina , Elastômeros de Silicone , Cloreto de Alumínio , Elastômeros de Silicone/química , Polimerização , Solução Salina , Materiais para Moldagem Odontológica/química , Epinefrina/química , Técnica de Moldagem Odontológica
14.
Ecotoxicol Environ Saf ; 264: 115459, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703808

RESUMO

Aluminum is a neurotoxic food contaminant. Aluminum trichloride (AlCl3) causes hippocampal mitochondrial damage, leading to hippocampal injury. Damaged mitochondria can release mitochondrial reactive oxygen species (mtROS) and activate nucleotide-binding oligomerization domain-like receptor-containing 3 (NLRP3) inflammasomes and apoptosis. E3 ubiquitin ligase PARK2 (Parkin)-mediated mitophagy can attenuate mitochondrial damage. However, the role of mitophagy in AlCl3-induced mice hippocampal damage and its regulatory mechanism remain elusive. First, C57BL/6 N mice were treated with 0, 44.825, 89.65, and 179.3 mg/kg body weight AlCl3 drinking water for 90 d. Apoptosis, NLRP3-inflammasome activation and mitochondrial damage were increased in AlCl3-induced hippocampal damage. In addition, Parkin-mediated mitophagy peaked in the middle-dose group and was slightly attenuated in the high-dose group. Subsequently, we used wild-type and Parkin knockout (Parkin-/-) mice to investigate the AlCl3-induced hippocampal damage. The results showed that Parkin-/- inhibited mitophagy, and aggravated AlCl3-induced mitochondrial damage, NLRP3-inflammasome activation, apoptosis and hippocampal damage. Finally, we administered MitoQ (mtROS inhibitor) and MCC950 (NLRP3 inhibitor) to AlCl3-treated Parkin-/- mice to investigate the mechanism of Parkin-mediated mitophagy. The results showed that inhibition of mtROS and NLRP3 attenuated hippocampal NLRP3-inflammasome activation, apoptosis, and damage in AlCl3-treated Parkin-/- mice. These findings indicate that Parkin-mediated mitophagy protects against AlCl3-induced hippocampal apoptosis in mice via the mtROS-NLRP3 pathway.


Assuntos
Cloreto de Alumínio , Hipocampo , Inflamassomos , Mitofagia , Animais , Camundongos , Cloreto de Alumínio/toxicidade , Apoptose , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
15.
Front Biosci (Landmark Ed) ; 28(8): 184, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37664939

RESUMO

BACKGROUND: A previously unstudied medicinal plant, Leucophyllum frutescens (Berland.) I.M. Johnst. (Scrophulariaceae) was investigated to evaluate its potential in preventing and treating neurodegenerative diseases, including Alzheimer's disease. METHODS: Methanolic leaf extract (MELE) and its fractions (HELE, CHLE, and BULE) were evaluated for their polyphenolic content and antioxidant activity by five different methods, including in vitro enzyme inhibition assays, which are clinically linked to neurodegenerative diseases. The potentially active n-butanol fraction (BULE) was further evaluated for its neuroprotective effects using an albino rat animal model and phytoconstituents profiling using Liquid chromatography with tandem mass spectrometry (LC-MS/MS), and in silico molecular docking by Maestro® Schrödinger. RESULTS: The n-butanol fraction (BULE) in the hydroalcoholic leaf extract exhibited the highest total phenolic content (230.435 ± 1.575 mg gallic acid equivalent gm-1± SD). The chloroform leaf extract exhibited the highest total flavonoid content (293.343 ± 3.756 mg quercetin equivalent gm-1± SD) as well as the highest antioxidant content, which was equivalent to Trolox, with five assay methods. Similarly, the chloroform and n-butanol fractions from the hydroalcoholic leaf extract significantly inhibited human acetylcholinesterase and butyrylcholinesterase with their IC50 values of 12.14 ± 0.85 and 129.73 ± 1.14 µg∙mL-1, respectively. The in vivo study revealed that BULE exhibited a significant neuroprotective effect at doses of 200 and 400 mg/kg/day in an aluminum chloride-induced neurodegenerative albino rat model. The LC-MS/MS analysis of BULE tentatively confirmed the presence of biologically active secondary metabolites, such as theobromine, propyl gallate, quercetin-3-O-glucoside, myricetin-3-acetylrhamnoside, isoquercitrin-6'-O-malonate, diosmetin-7-O-glucuronide-3'-O-pentose, pinoresinol diglucoside, asarinin, eridictoyl, epigallocatechin, methyl gallate derivative, and eudesmin. The results from the computational molecular docking of the identified secondary metabolites revealed that diosmetin-7-O-glucuronide-3'-O-pentose had the highest binding affinity to human butyrylcholinesterase, while isoquercetin-6'-O-malonate had the highest to human acetylcholinesterase, and pinoresinol diglucoside to human salivary alpha-amylase. CONCLUSIONS: The present study concluded a need for further exploration into this medicinal plant, including the isolation of the bioactive compounds responsible for its neuroprotective effects.


Assuntos
Fármacos Neuroprotetores , Scrophulariaceae , Ratos , Animais , Humanos , Antioxidantes/farmacologia , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase , Cloreto de Alumínio , Butirilcolinesterase , 1-Butanol , Clorofórmio , Cromatografia Líquida , Glucuronídeos , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Hipocampo , Extratos Vegetais/farmacologia
16.
Parasit Vectors ; 16(1): 303, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644584

RESUMO

BACKGROUND: The successful use of semiochemicals to attract insects to traps is based on research on the most suitable compounds and their release profiles over time. Based on the group's promising results, matrices with a more adequate release profile and more eco-friendly properties for the release of 1-hexanol were developed. To use a more suitable prototype in the field, the most promising systems were added to a capsule and evaluated in a wind tunnel. Behavioral experiments were performed using the sand fly species, Lutzomyia longipalpis, to evaluate the efficacy of the proposed system. METHODS: Different delivery systems were developed by varying the polymer (gellan gum and pectin) ratio, crosslinker (aluminum chloride) concentration, and glutaraldehyde removal.The delivery systems were loaded with 1-hexanol, and their release profiles were evaluated using gravimetric analysis under ambient and high-humidity conditions. When the matrix system was placed inside a plastic container, modulations in the active release profile were observed and the system could be reused. Actid attraction behaviors of the sand fly species, Lu. longipalpis, were evaluated in a wind tunnel when exposed to 1-hexanol-loaded release systems at different times. RESULTS: Among the four formulations evaluated, System 2 (gellan gum and pectin in a 1:1 ratio with 5% aluminum chloride) exhibited the most promising release profile, with greater uniformity and longer compound release time. The maximum 1-hexanol release uniformity was achieved over a longer time, mainly every 24 h, under both ambient and high-humidity conditions. System 2 can be reused at least once with the same structure. The wind tunnel trials exhibited efficient activation and attraction of Lu. longipalpis to 1-hexanol after 24, 48, and 72 h in System 2 placed inside the capsules. CONCLUSIONS: The polymeric matrix supplemented with 1-hexanol and introduced in plastic capsules showed promising results in attracting sand flies. This system can be used as a solution for other attractive compounds as well as in other applications where their release needs to be controlled or prolonged.


Assuntos
Phlebotomus , Psychodidae , Animais , Cloreto de Alumínio , Cápsulas , Polímeros , Plásticos , Pectinas
17.
Toxicol In Vitro ; 92: 105658, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37544489

RESUMO

Aluminum chloride (AlCl3) exposure is pervasive in our daily lives. Numerous studies have demonstrated that exposure to AlCl3 can lead to male reproductive toxicity. However, the precise mechanism of action remains unclear. The objective of this study is to investigate the mechanism of aluminum-induced toxicity by analyzing the alterations in the global transcriptome gene profile of mouse spermatocytes (GC-2spd cells) exposed to AlCl3. GC-2spd cells were exposed to concentrations of 0, 1, 2, and 4 mM AlCl3, and high-throughput mRNA-seq was performed to investigate the changes in the transcriptome after exposure to 4 mM AlCl3. Our findings indicate that exposure to AlCl3 led to an increase in oxidative stress, disrupted glutathione metabolism, reduced cell viability, and altered gene expression in mouse spermatocytes. Gene enrichment analysis revealed that the differentially expressed genes (DEGs) were associated with various biological functions such as mitochondrial inner membrane, response to oxidative stress. Furthermore, these DEGs were found to be enriched in pathways including proteasome, glutathione metabolism, oxidative phosphorylation, and Hif-1 signaling pathway. Real-time PCR and western blot were employed to validate the expression alterations of pivotal genes, and the outcomes exhibited concordance with the mRNA-seq findings. This study provides a theoretical basis for revealing the potential mechanism of male reproductive toxicity caused by aluminum exposure.


Assuntos
Alumínio , Espermatócitos , Masculino , Camundongos , Animais , Cloreto de Alumínio/toxicidade , Alumínio/metabolismo , Transcriptoma , Estresse Oxidativo , Glutationa/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Inflammopharmacology ; 31(5): 2675-2684, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37477796

RESUMO

Recent studies have shown that, coupled with other environmental factors, aluminium exposure may lead to neurodegeneration resulting in cognitive impairment resembling Alzheimer's disease. Menaquinone, a form of vitamin K2, aids in maintaining healthy bones and avoids coronary calcification. It also has anti-inflammatory and antioxidant properties. Here, we study the neuroprotective effects of vitamin K2 (MK-7) using the animal model of Alzheimer's disease (AD). Aluminium chloride (AlCl3; 100 mg/kg for 3 weeks orally) was administered to Swiss albino mice to induce neurodegeneration and Vitamin K2 (100 g/kg for 3 weeks orally) was applied as treatment. This was followed by behavioural studies to determine memory changes. The behavioural observations correlated with proinflammatory, oxidative, and brain histopathological changes in AlCl3-treated animals with or without vitamin K2 treatment. AlCl3 administration led to memory decline which was partially restored in Vitamin K2 treated animals. Myeloperoxidase levels in the brain increased due to AlCl3-mediated inflammation, which Vitamin K2 prevented. The acetylcholine esterase and oxidative stress markers induced by AlCl3 were reversed by Vitamin K2. Also, Vitamin K2 helps to restore hippocampal BDNF levels and reduced the amyloid ß accumulation in AlCl3-administered animals. Additionally, Vitamin K2 protected the hippocampal neurons against AlCl3-mediated damage as observed in histopathological studies. We conclude that Vitamin K2 could partially reverse AlCl3-mediated cognitive decline. It increases acetylcholine and BDNF levels while reducing oxidative stress, neuroinflammation, and ß-amyloid deposition, thus protecting the hippocampal neurons from AlCl3-mediated damage.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Camundongos , Animais , Cloreto de Alumínio/farmacologia , Vitamina K 2/farmacologia , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Compostos de Alumínio/toxicidade , Cloretos/farmacologia , Acetilcolina/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Estresse Oxidativo
19.
Chemosphere ; 338: 139412, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37423412

RESUMO

This work assessed the adsorption performance of three common PFAS compounds (PFOA, PFOS and PFHxS) on two water treatment sludges (WTS) and two biochars (commercial biomass biochar and semi-pilot scale biosolids biochar). Of the two WTS samples included in this study, one was sourced from poly-aluminium chloride (PAC) and the other from alum (Al2(SO4)3). The results of experiments using a single PFAS for adsorption reinforced established trends in affinity - the shorter-chained PFHxS was less adsorbed than PFOS, and the sulphates (PFOS) were more readily adsorbed than the acid (PFOA). Interestingly, PAC WTS, showed an excellent adsorption affinity for the shorter chained PFHxS (58.8%), than the alum WTS and biosolids biochar at 22.6% and 41.74%, respectively. The results also showed that the alum WTS was less effective at adsorption than the PAC WTS despite having a larger surface area. Taken together, the results suggest that the hydrophobicity of the sorbent and the chemistry of the coagulant were critical factors for understanding PFAS adsorption on WTS, while other factors, such as the concentration of aluminium and iron in the WTS could not explain the trends seen. For the biochar samples, the surface area and hydrophobicity are believed to be the main drivers in the different performances. Adsorption from the solution containing multiple PFAS was also investigated with PAC WTS and biosolids biochar, demonstrating comparable performance on overall adsorption. However, the PAC WTS performed better with the short-chain PFHxS than the biosolids biochar. While both PAC WTS and biosolids biochar are promising candidates for adsorption, the study highlights the need to explore further the mechanisms behind PFAS adsorption, which could be a highly variable source to understand better the potential for WTS to be utilized as a PFAS adsorbent.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Purificação da Água , Esgotos , Biossólidos , Alcanossulfonatos , Purificação da Água/métodos , Cloreto de Alumínio
20.
Environ Toxicol Pharmacol ; 102: 104220, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37454825

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterised by the presence of ß-amyloid plaques and acetylcholine depletion leading to neurobehavioral defects. AD was contributed also with downregulation of TGF-ß1/SMAD2 and GSK3ß/ß-catenin pathways. Simvastatin (SMV) improved memory function experimentally and clinically. Hence, this study aimed to investigate the mechanistic role of SMV against aluminium chloride (AlCl3) induced neurobehavioral impairments. AD was induced by AlCl3 (50 mg/kg) for 6 weeks. Mice received Simvastatin (10 or 20 mg/kg) or Donepezil (3 mg/kg) for 6 weeks after that the histopathological, immunohistochemical and biochemical test were examined. Treatment with SMV improved the memory deterioration induced by AlCl3 with significant recovery of the histopathological changes. This was concomitant with the decrease of AChE and Aß (1-42). SMV provides its neuroprotective effect through upregulating the protein expression of ß-catenin, TGF-ß1 and downregulating the expression of GSK3ß, TLR4 and p-SMAD2.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Camundongos , Animais , Cloreto de Alumínio , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...